

UNIVERSIDAD AUTÓNOMA DE ZACATECAS

"Francisco García Salinas"

PROGRAMA DE INGENIERÍA MECÁNICA

UDI-Mecánica de Sólidos Deformables

Eje Form	ativo:	Profesionaliz	zante	222/1	Academia	a de:	Diseño	
Antecedentes:		o Integral, Est a de los Mater		Consecu	entes:	Mecâ	ánica de Sól	idos Deformables II
Horas	Fotales	: 80		Valor en	Créditos:	4		
Horas Teoría:	64		Horas Actividades Complementarias: 16		16			

Competencia de la UDI

Analiza y aplica los métodos analíticos para determinar la resistencia, rigidez y estabilidad de diversos elementos de máquinas y estructuras mecánicas sujetos a diversos estados de carga.

Unidad de Aprendizaje I: Introducción: Concepto de esfuerzo Competencia especifica Identifica y calcula los esfuerzos normales y cortantes por carga axial que actúan en elementos estructurales con un factor de seguridad adecuado		
1.1. Introducción: Hipótesis fundamentales	VAI)	
1.2. Fuerzas y esfuerzos	2	
1.3. Esfuerzo normal	4	
1.4. Esfuerzo cortante	4	
1.5. Esfuerzo de apoyo en conexiones	3	
1.6. Esfuerzo en un plano oblicuo bajo carga axial	3	
1.7. Esfuerzo último y esfuerzo admisible; factor de seguridad	1	

Nivel de Competencia: Desarrolla destrezas cognitivas y prácticas necesarias para resolver problemas aplicando los conceptos analizados

Productos

- Problemas prácticos resueltos

Conocimientos

- Comprende las hipótesis básicas
- Comprende e identifica el concepto de esfuerzo normal, cortante y de apoyo
- Comprende e identifica los esfuerzos en planos oblicuos
- Comprende y selecciona el factor de seguridad

Actitudes/Hábitos/Valores

- Capacidad crítica y autocritica
- Trabajo en equipo inter y multidisciplinario
- Habilidades interpersonales
- Compromiso ético

Estrategias Didácticas

- Análisis minucioso del planteamiento de los problemas
- Construcción de los diagramas de cuerpo libre
- Reconocimiento de datos disponibles
- Planteamientos analíticos de la solución
- Presentación de los resultados y análisis de los mismos

Estrategias para la Evaluación

- Selección de problemas
- Solución de problemas de manera individual
- Aplicación de examen escrito

Instrumentos de Evaluación	Criterios de Evaluación		
Asistencia regular a clases	10		
Entrega de problemas propuestos resueltos	10		
Examen escrito	80		

FRANCISCO GARCÍA SALTIN	AS 7		
Unidad de Aprendizaje II: Esfuerzo y deformación	mms //		
Competencia especifica	1/1/1/1////		
Analiza e identifica el diagrama esfuerzo deformación para materia	ales		
dúctiles y frágiles y calcula las deformaciones por carga axial y cambio de			
temperatura. Determina la ley generalizada de Hooke			
Contenido de la Unidad de Aprendizaje I	H/S/M		
	26		
1.1. Deformación normal bajo carga axial	1		
1.2. Diagrama esfuerzo deformación	2		
1.3. Ley de Hooke. Módulo de elasticidad	2		

1.4. Cargas repetidas. Fatiga	1
1.5. Deformación de elementos sometidos a carga axial	4
1.6. Problemas estáticamente indeterminados	2
1.7. Deformación por cambio de temperatura	3
1.8. Relación de Poisson	1
1.9. Ley generalizada de Hooke	2
1.10. Dilatación. Módulo de compresibilidad	1
1.11. Deformación cortante	2
1.12. Relación entre E , v y G	1
1.13. Distribución de esfuerzos y deformaciones bajo carga axial.	1
Principio de Saint-Venant	
1.14. Concentración de esfuerzos	2
1.15. Deformaciones Plásticas y esfuerzos residuales	1

Nivel de Competencia:

Desarrolla destrezas cognitivas y prácticas necesarias para resolver problemas aplicando los conceptos analizados

Productos

- Problemas prácticos resueltos

Conocimientos

- Comprende las hipótesis básicas
- Comprende e identifica el diagrama esfuerzo deformación
- Comprende e identifica las deformaciones por carga axial, cortante y temperatura
- Analiza y comprende la Ley generalizada de Hooke
- Comprende y selecciona los factores concentración de esfuerzos

Actitudes/Hábitos/Valores

- Capacidad crítica y autocritica
- Trabajo en equipo inter y multidisciplinario
- Habilidades interpersonales
- Compromiso ético

Estrategias Didácticas

- Análisis minucioso del planteamiento de los problemas
- Construcción de los diagramas de cuerpo libre
- Reconocimiento de datos disponibles
- Planteamientos analíticos de la solución
- Presentación de los resultados y análisis de los mismos

Estrategias para la Evaluación

- Selección de problemas
- Solución de problemas de manera individual
- Aplicación de examen escrito

Instrumentos de Evaluación	Criterios de Evaluación
Asistencia regular a clases	10
Entrega de problemas propuestos	10
resueltos	
Examen escrito	80

Unidad de Aprendizaje III: Torsión.

Competencia especifica

Analiza y determina los esfuerzos y deformaciones por torsión en elementos circulares y no circulares

Contenido de la Unidad de Aprendizaje I	H/S/M 20
1.1. Introducción	1
1.2. Deformación en un eje circular	1
1.3. Esfuerzos en el rango elástico	3
1.4. Angulo de torsión en el rango elástico	3
1.5. Ejes estáticamente indeterminados	1
1.6. Ejes de transmisión de potencia	4
1.7. Concentración de esfuerzos en ejes circulares	2
1.8. Deformaciones plásticas y esfuerzos residuales	
1.9. Torsión de elementos no circulares	2
1.10. Ejes huecos con pared delgada	2

Nivel de Competencia:

Desarrolla destrezas cognitivas y prácticas necesarias para resolver problemas aplicando los conceptos analizados

Productos

- Problemas prácticos resueltos

Conocimientos

- Comprende las hipótesis básicas
- Comprende e identifica la deformación y esfuerzo en un eje circular
- Analiza y comprende el ángulo de torsión en el rango elástico

- Analiza y comprende la distribución del esfuerzo cortante por torsión
- Calcula el esfuerzo y deformación por torsión
- Comprende y selecciona los factores concentración de esfuerzos
- Comprende la transmisión de potencia en ejes circulares
- Comprende y calcula los esfuerzos en ejes no circulares y huecos

Actitudes/Hábitos/Valores

- Capacidad crítica y autocritica
- Trabajo en equipo inter y multidisciplinario
- Habilidades interpersonales
- Compromiso ético

Estrategias Didácticas

- Análisis minucioso del planteamiento de los problemas
- Construcción de los diagramas de cuerpo libre
- Reconocimiento de datos disponibles
- Planteamientos analíticos de la solución
- Presentación de los resultados y análisis de los mismos

Estrategias para la Evaluación

- Selección de problemas
- Solución de problemas de manera individual
- Aplicación de examen escrito

Instrumentos de Evaluación	Criterios de Evaluación
Asistencia regular a clases	10
Entrega de problemas propuestos resueltos	
Examen escrito	80

REFERENCIAS

Bibliografía

- 1. Beer F.P., E. R. Johnston Jr.; Mecánica de Materiales; Mc Graw Hill; 2da Edición, 1994
- 2. Popov Edgar P.; Mecánica de Materiales; Limusa
- 3. M. Gere James; Mecánica de Materiales; Thomson, 2004
- 4. Oriz Berrocal Luis; Resistencia de Materiales; Mc. Graw Hill, 1991
- 5. Timoshenko S.; Resistencia de Materiales; Espasa Calpe S.A.
- 6. Timoshenko S, D.H. Young, Elementos de Resistencia de Materiales, Montaner y Simos, 1ª edición. 1975
- 7. E. J.Hearn; Resistencia de materiales. Diseño de estructuras y máquinas; Interamericana; 1984

POLITICAS DEL CURSO

Cumplimiento del Estatuto General Universitario, Reglamento Escolar vigente y demás reglamentos Institucionales y de la Unidad que rijan el desempeño de docentes y alumnos al interior de la Universidad.

Tolerancia máximo de ingreso al aula: 15 minutos después de la hora programada para la clase.

Entrega de tareas y trabajos en tiempo y forma. Retardo de una clase en la entrega conlleva a bajar dos puntos sobre la calificación total del trabajo o tarea, retardo de dos clases ya no se recibe la tarea.

El profesor se reserva el criterio de aceptar o no un trabajo o tarea con base en los requisitos mínimos que ésta deba cumplir.

Conservar el respeto y buenos modales al interior del aula; quien incurra en agresiones y/o faltas de respeto será sancionado con dos puntos menos en su calificación final ordinaria. En caso de reincidencia será puesto a disposición del Consejo de Unidad para que se apliquen las medidas pertinentes.

PERFIL DOCENTE

Se recomienda que el profesor tenga las siguientes características:

- Cuente con una formación profesional sólida en el área de la Ingeniería Mecánica, preferentemente con grado de Maestría en Ingeniería Mecánica.
- Posea conocimientos para aplicar el análisis vectorial en la resolución de problemas de dinámica.
- Facilidad de palabra para explicar los conceptos y guiar a los alumnos
- Responsable, organizado, honesto, consecuente, justo y creativo

CALIFICACION ORDINARIA: promedio de calificaciones por unidad de aprendizaje, lo cual queda integrado en el portafolio de evidencias.

CALIFICACION EXTRAORDINARIA: entregar completo el portafolio de evidencias

DE LAS ASISTENCIAS:

De acuerdo al reglamento escolar vigente (cap v art 87, fracc vi): "asistir a por lo menos ochenta por ciento de las sesiones, para que tengan derecho a presentar el examen ordinario, y 70 por ciento para extraordinario. Las faltas de asistencia deberán justificarse ante el director de la respectiva unidad académica"

Elaboro:

M. I. ANTONIO MARTÍNEZ PALOMINO Integrantes de la Academia de DISEÑO

Revisó Integrantes de la Academia

Dr. Eduardo Jareño Betancourt	Dr. Raúl Chávez Romero
M.I. Antonio Martínez Palomino	M.C. Salvador Gómez Jiménez
M.C. Sara Isabel Zesati Belmontes	M.I.A. Aurora Isabel Chávez Montes
Ing. Fariza Giselle Ruíz García	
Coordinador de	la Academia
Dra. Ana María B	ecerra Ferreiro