

UNIVERSIDAD AUTÓNOMA DE ZACATECAS "Francisco García Salinas"

ÁREA DE INGENIERÍAS Y TECNOLOGICAS

PROGRAMA DE INGENIERÍA MECÁNICA

UDI-Ingeniería de Sistemas Dinámicos

Eje Formativo: Profesio		nalizante	200	Academi	a de:	Diseño		
Antecedentes:	Dinán	nicas de l	Maquinas	Consecu	entes:			
Horas	Fotales	: 80		Valor en	Créditos:	4		
Horas Teoría:	64		Horas Actividades Complementarias:			16		

Competencia de la UDI

Modelar sistemas mecánicos aplicando las leyes físicas con el fin de analizarlos y compensarlos

Unidad de Aprendizaje I: Modelado Matemático de Sistemas l	Dinámicos
Competencia especifica	78781
Aplicar a los sistemas de ingeniería mecánica las leyes de Newton, Ki	rchhoff, Bernoulli
con el fin de obtener su modelo matemático	
Contenido de la Unidad de Aprendizaje I	H/S/M
1.1. Introducción	1
1.2. Función de Transferencia y de Respuesta al Impulso	1
1.3. Sistemas de Control Automáticos	2
1.4. Sistemas Mecánicos	2
1.5. Sistemas Eléctricos y Electrónicos	2
1.6. Sistemas Hidráulicos y Neumáticos	
	NE 01111111111111

Unidad de Aprendizaje II: Análisis de la Respuesta Transitoria y Estacionaria				
Competencia especifica				
Aplicar a los sistemas lineales invariantes en el tiempo la transformada de Laplace con				
el fin de analizar el comportamiento transitorio y estacionario				
Contenido de la Unidad de Aprendizaje II	H/S/M			
2.1. Sistemas de Primer Orden	2			
2.2. Sistemas de Segundo Orden	2			
2.3. Sistemas de Orden Superior	2			

2.4. Criterio de Estabilidad de Routh	2
2.5. Comportamiento del Sistema	2

Unidad de Aprendizaje III: Diseño de Sistemas de Control Mediante el Método del Lugar de las Raíces

Competencia especifica

Aplicar a los sistemas lineales invariantes en el tiempo el método de lugar de las raíces con el objeto de compensarlos

Contenido de la Unidad de Aprendizaje III	
3.1. Graficas del Lugar de las Raíces	8
3.2. Sistemas con Retroalimentación Positiva y	4
Condicionalmente Estables	
3.3. Lugar de las Raíces para Sistemas con Retardo de Transporte	2
3.4. Compensaciones	8

Unidad de Aprendizaje IV: Diseño de Sistemas de Control Mediante la Respuesta en Frecuencia

Competencia especifica

Aplicar a los sistemas lineales invariantes en el tiempo el método de Respuesta en frecuencia con el fin de compensarlos

Contenido de la Unidad de Aprendizaje IV	H/S/M	H/S/M	
4.1. Diagramas de Bode	1381	2	
4.2. Diagramas Polares	781	2	
4.3. Diagrama de Magnitud Logarítmica Respecto de la Fase		2	
4.4. Criterio de Estabilidad de Nyquist		4	
4.5. Análisis de Estabilidad y Estabilidad Relativa		2	
4.6. Determinación Experimental de Funciones de Transferencia		2	
4.7. Compensaciones	10	8	

Nivel de Competencia:

- Desarrolla destrezas cognitivas y prácticas necesarias para resolver problemas de Sistemas Dinámicos aplicando el método correspondiente

Productos

- Ejercicios Resueltos, Programas en Matlab y Examen escrito

Conocimientos

- Análisis de la respuesta de un sistema Dinámico a entradas

Actitudes/Hábitos/Valores

- Adaptación del comportamiento propio a las circunstancias para resolver problemas de Sistemas Dinámicos

Estrategias Didácticas

- Exposición Teórica y Resolución de Problemas

Estrategias para la Evaluación

- Resolución de problemas de manera individual, correcta programación del método de las series de Fourier en Matlab y Examen escrito

Instrumentos de Evaluación	Criterios de Evaluación
- Resolución de problemas	30%
- Programas en Matlab	20%
- Examen escrito	50%

REFERENCIAS

- 1. Bibliografía
- Ingeniería de Control Moderna, Quinta edición, Katsuhiko Ogata, Ed Prentice Hall
- Sistemas de Control Automático 7ma Edicion ,Benjamin C. Kuo, Ed Prentice Hall
- 2. Software
- Matlab

POLITICAS DEL CURSO

PERFIL DOCENTE

Se recomienda que el profesor tenga las siguientes características:

- Cuente con una formación profesional sólida en el área a impartir preferentemente Ingeniero Mecánico o afín con grado de Maestría en Ingeniería.
- Posea conocimientos de normas y dominio de software especializado
- Facilidad de palabra para explicar los conceptos y guiar a los alumnos
- Responsable, organizado, honesto, consecuente, justo y creativo

CALIFICACION ORDINARIA: promedio de calificaciones por unidad de aprendizaje, lo cual queda integrado en el portafolio de evidencias.

CALIFICACION EXTRAORDINARIA: entregar completo el portafolio de evidencias

DE LAS ASISTENCIAS:

De acuerdo al reglamento escolar vigente (cap v art 87, fracc vi): "asistir a por lo menos ochenta por ciento de las sesiones, para que tengan derecho a presentar el examen ordinario, y 70 por ciento para extraordinario. Las faltas de asistencia deberán justificarse ante el director de la respectiva unidad académica".

-1		1				
E	3	h	$\overline{}$	r	\sim	٠
1 7	α	יעו	.,		.,	_

Dr. Roque Martínez Ortiz

Integrantes de la Academia de Diseño

Coordinador de la Academia de Diseño

Dra. Ana María Becerra Ferreiro