

UNIVERSIDAD AUTÓNOMA DE ZACATECAS

"Francisco García Salinas"

ÁREA DE INGENIERÍAS Y TECNOLÓGICAS UNIDAD ACADÉMICA DE INGENIERÍA PROGRAMA DE INGENIERÍA MECÁNICA

UDI-Álgebra Lineal

Eje Formativo:	Básico	7	Academia de:	Matemáticas	
Antecedentes:	Álgebra Superior		Consecuentes:	Análisis Vectorial	
				Ecuaciones	
				Diferenciales I	
Horas Totales:	64		Valor en Créditos:	4	
Horas Teoría:	64	Horas A	Horas Actividades Complementarias: 0		0

1. Propósito General del Curso

Las ciencias naturales y la ingeniería requieren de las ciencias exactas para su estudio y uso. En particular el Álgebra Lineal provee de las herramientas necesarias para la elaboración de modelos lineales que explican y predicen diversos fenómenos de estas áreas del conocimiento.

La finalidad del curso es revisar los temas de sistemas de ecuaciones lineales y sus diversos acercamientos, tales como matrices, así como espacios vectoriales, sus componentes y propiedades, para aplicarse en programación y en modelos lineales haciéndolos suyos mediante su estudio teórico y aplicación práctica.

Esta asignatura favorece el desarrollo de habilidades de visualización geométrica tanto en el plano como en el espacio y el relacionarlos con aspectos simbólicos.

El curso de Álgebra Lineal está situado dentro del Eje Formativo Básico y dentro del área de Ciencias Básicas. Proporciona al estudiante los conocimientos, métodos, técnicas y criterios para que mediante la modelación lineal represente fenómenos específicos propios de la ingeniería y las ciencias, favoreciendo en el estudiante el razonamiento crítico, la creatividad, el trabajo en equipo y el interés por la búsqueda de información.

2. Competencias del Curso

Desarrollar modelos matemáticos utilizando operaciones con matrices y espacios vectoriales, para establecer el método más adecuado en la resolución de los sistemas de ecuaciones lineales, así como utilizar las propiedades de los espacios

vectoriales como una herramienta para extender la representación geométrica a una amplia variedad de problemas matemáticos, científicos y tecnológicos, fomentando la creatividad y realizando trabajo en equipo para desarrollar en el estudiante el razonamiento crítico, la tolerancia, el respeto y la responsabilidad.

3. Evidencias de Desempeño

- Cumplimiento de las tareas asignadas
- Entrega de tareas y reportes de investigación de manera puntual y de forma profesional.
- Perseverancia en la resolución de problemas
- Exámenes escritos
- Entrega al final del curso de un portafolio que contenga la totalidad de tareas y de los ejercicios realizados en los talleres
- Puntualidad y 80% mínimo de asistencia

4. Desarrollo por Unidades de Aprendizaje

Contenido	Objetivos Temáticos	Competencia	
1. Estructuras Algebraicas Duración: 9.0 hrs.	Introducir los conceptos	Identificar y reconocer las	
1.1. Operaciones binarias	básicos del álgebra	propiedades de las	
a) Definición y propiedades	abstracta: operaciones	operaciones	
1.2. Grupos	binarias y estructuras	binarias, reconocer y	
 a) Definición y propiedades elementales 	algebraicas y sus	determinar elementos	
b) Grupo Abeliano	propiedades,	neutros y simétricos de	
c) Subgrupos	para poder interpretar	diversas operaciones	
1.3. Anillos	numerosas situaciones de la	binarias, comprender el	
a) Definición y tipos de anillos	vida cotidiana.	concepto de estructura	
b) Dominio entero		algebraica, identificar los	
1.4. Campos		diferentes tipos de	
a) Definición de campo		estructuras algebraicas a	
b) Los números racionales, reales y		través de sus diferentes	
complejos como ejemplos de campos con		propiedades, identificar en	
la adición y la multiplicación		diferentes situaciones los	
1.5. Isomorfismos y homomorfismos entre		diferentes tipos de	
grupos y entre anillos		estructuras algebraicas y	
		crear ejemplos de los	
		diferentes tipos de	
		estructuras	
		algebraicas, con disposición	
		al trabajo en equipo,	
		organización, curiosidad y	
2.5	D . 1	compromiso.	
2. Espacios vectoriales Duración: 15.0 hrs.	Demostrar las propiedades	Reconocer y resolver	
2.1. Definición y propiedades básicas (Álgebra	básicas de los espacios	problemas de dependencia	
vectorial)	vectoriales; mostrar la	e independencia lineal e	
a) Espacio euclidiano de <i>n</i> dimensiones	manera de reconocer los	identificar las	
b) Espacios vectoriales en general y sus	espacios de independencia	características de una base	
propiedades	lineal y la determinación de	de un espacio vectorial, con	
c) Subespacios	el rango, nulidad, base y	disposición al trabajo en	
d) Isomorfismos entre espacios	dimensión de un espacio	equipo, organización,	

	I	
vectoriales	vectorial para resolver	curiosidad y compromiso.
2.2. Independencia lineal	problemas físicos y	
a) Combinación e independencia lineal	geométricos.	
b) Conjunto generador de un espacio		
vectorial		
2.3. Bases y dimensión		
a) Base y dimensión de un espacio		
vectorial		
b) Coordenadas de un vector respecto a		
una base ordenada		
2.4. Cambio de base		
2.5 Bases ortonormales y proyecciones en \mathbb{R}^n .		
Proceso de ortonormalización de Gram-		
Schmidt		
2.6. Espacio de los renglones de una matriz		
a) Coordenadas		
b) Aplicaciones a la obtención de bases		
3. Espacios con producto interno Duración:	Definir el producto interno y	Obtener la norma, distancia
12.0 hrs.	analizar sus características	y ángulo en espacios con
3.1. Producto interno y sus propiedades	fundamentales a efecto de	producto interno y obtener
elementales	aplicarlo en la resolución de	proyecciones ortogonales,
3.2. Norma de un vector y sus propiedades.	problemas de espacios	con disposición al trabajo
Vectores unitarios	vectoriales.	en equipo, organización,
3.3. Desigualdad de Cauchy-Schwarz		curiosidad y compromiso.
3.4. Longitud y ángulo en espacios con		
producto interno. Vectores ortogonales		
3.5. Proyección		
a) Complemento ortogonal		
b) Proyección de un vector sobre un		
subespacio		
c) Teorema de proyección		
4. Transformaciones lineales Duración: 21.0 hrs.	Definir el concepto de	Realizar transformaciones
4.1. Definición de transformación lineal	transformación lineal y	lineales sobre problemas
4.2. Núcleo e imagen de una transformación	mostrar su aplicación para la	físicos y geométricos, con
Lineal	resolución de problemas que	disposición al trabajo en
4.3. Transformaciones matriciales. Teorema de	lo involucren	equipo, organización,
la dimensión		curiosidad y compromiso.
4.4. Representación matricial de una		_
transformación lineal		
4.5. Matrices semejantes. Diagonalización		
4.6. Matrices ortogonales		
5. Valores y vectores propiosDuración: 15.0 hrs.	Definir el concepto de	Encontrar los eigenvalores
5.1. Eigenvalores y eigenvectores	valores y vectores propios	y eigenvectores de matrices
5.2. Matrices hermitianas	tanto de matrices hermitianas	hermitianas y no
5.3. Matrices no hermitianas	como no hermitianas,	hermitianas, y encontrar
5.4. Matrices fundamentales	mostrar la manera cómo	matrices fundamentales,
	obtenerlos y cómo encontrar	con disposición al trabajo
	matrices fundamentales	en equipo, organización,
		curiosidad y compromiso.
	<u> </u>	

5. Estrategias Didácticas

La metodología que se implantará es que el alumno aprenda a desarrollar y analizar técnicas matemáticas de resolución de problemas usando el razonamiento, mediante las siguientes estrategias didácticas:

- Exposición de conceptos y propiedades básicas de cada tema por parte del docente.
- Explicar y ejemplificar los métodos aplicados en el Álgebra Lineal.
- Utilización de técnicas de preguntas y respuestas, para la exploración del conocimiento adquirido.
- Resolución de ejercicios por parte del alumno.
- Fomento del trabajo en equipo.
- Ejercicios extraclase por parte de los alumnos para la aplicación de métodos vistos en clase y reportes de investigación que complementen los temas.
- Se considerarán actividades extracurriculares de formación como talleres de resolución de problemas a juicio del docente o del tutor asignado a cada alumno para fortalecer la formación académica en el Eje Básico.
- Al inicio del curso se entregará a alumnos y maestros la Guía Docente de acuerdo con las especificaciones y que incluya además las notas del curso, tareas y ejercicios

6. Estrategias para la Evaluación

Calificación mínima aprobatoria	6.0
---------------------------------	-----

Criterios de evaluación del curso:

•	Exámenes parciales departamentales	60%
•	Tareas, talleres	30%
•	Reportes de investigación	5%
•	Puntualidad y asistencia	5%

Lo anterior se llevará a cabo durante el curso para que refleje las evidencias de desempeño. En las tareas se considerarán los ejercicios resueltos correctamente con claridad, limpieza y acordes a las indicaciones dadas.

7. Bibliografía

- 1. Introducción al álgebra lineal. Howard Anton. Ed. LIMUSA
- 2. Álgebra lineal. Stanley I. Grossman. McGraw Hill

8. Perfil Docente

Licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo contenido en el área de matemáticas sea similar. Deseable haber realizado estudios de posgrado, contar con experiencia docente o haber participado en cursos o seminarios de iniciación en la práctica docente.